NOWCASTING PRIVATE CONSUMPTION: TRADITIONAL INDICATORS, UNCERTAINTY MEASURES, AND THE ROLE OF INTERNET SEARCH QUERY DATA

María Gil, Javier J. Pérez, and Alberto Urtasun
Banco de España

A. Jesus Sánchez
Univ. Complutense

Workshop Nowcasting and Big Data
Banco Central de la República Argentina
Buenos Aires, 24 November 2017

*DISCLAIMER
The views expressed in this presentation are those of the authors and should not be attributed to the Banco de España or the Eurosystem
Outline

1. Motivation
2. Literature review
3. The data
4. Modeling approach
5. The empirical exercise
6. Selection of results and conclusions
1. Motivation

- Relevance of private consumption: some 60% of GDP
- Key variable from both a forecasting and a policy perspective
- Real-time assessment limited by availability of statistical information (QNA and monthly, traditional indicators)

![Example: Nowcasting of q-q growth rates of QNA private consumption in the first quarter of 2017 (Spain)]
1. Motivation: traditional vs. “new” indicators

- There is more data around than what is typically exploited in many short term forecasting models

Target variable: QNA private consumption

- "Hard" indicators
 - Available at the monthly frequency … but released with significant lags

- "Soft" indicators
 - More timely
 - Typically more correlated with hard indicators than with QNA variables
 - Contemporaneous, leading or lagging behavior?

- Other (less standard) sources?
 - Credit cards’ spending / withdrawals
 - Indicators of “uncertainty”
 - Google searches
 - …
1. Motivation

AIM OF THE PAPER:

Explore the relative merits of...

... hard vs. soft

... traditional vs. “new” indicators

to “nowcast” Spanish real private consumption
Outline

1. Motivation

2. Literature review

3. The data

4. Modeling approach

5. The empirical exercise

6. Selection of results and conclusions
2. Literature review

- Traditionally, the literature on “nowcasting” has been quite focused on GDP.

- Few exceptions of papers in which GDP is modelled together with its demand and/or supply components.

- More recently, the literature has started to explore “new” sources:
 - Not so much for the case of private consumption.
 - GOOGLE SEARCHES
 - ATM/Point Of Sale DATA
 - UNCERTAINTY MEASURES
Outline

1. Motivation
2. Literature review
3. The data
4. Modeling approach
5. The empirical exercise
6. Selection of results and conclusions
3. The data

- Quarterly private consumption, monthly indicators

- (lower frequencies not exploited yet)

- Quarterly private consumption

- Social sec. registrations
 Retail trade index
 Services activity index
 PMI – services
 Consumers confidence index

- Credit cards’ payments
 Amounts
 Number

- Disagreement consumption
 Disagreement about inflation
 Uncertainty on unemployment
 Economic Policy Uncertainty
 IBEX-35 volatility index

- Google Trends

- “Traditional” indicators

- ATM/POS

- Uncertainty

- Google search queries
3. The data: ATM/POS

- Widespread use of electronic payment systems
- Timeliness [daily/weekly frequency, in theory]
- Credit cards: payments by means of credit/debit cards in points of sales [seasonally adjusted and deflated by national CPI]
- Other options: ATMs; cash withdrawals; Cash and equivalents
3. The data: Google Trends

- Households use internet to buy goods and services
 - Willingness to buy
 - Info easily available.

- Evidence of usefulness in the literature: robustness?

- “Google Trends” provides an index of the relative volume of search queries conducted through Google (daily/weekly)
 - It provides aggregated indexes of search queries which are classified into categories and sub-categories using an automated classification engine
 - We select consumption-relevant categories (~60) that match the product categories of personal consumption expenditures of the BEA's national income and product accounts
3. The data: Google Trends

- Example

<table>
<thead>
<tr>
<th>Classification by national product and income</th>
<th>Google categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durable goods</td>
<td></td>
</tr>
<tr>
<td>Motor vehicles and parts</td>
<td>Automotive, auto financing, automotive parts, auto insurance, Seat, Mercedes Benz, Mercedes offer, second hand car, car, to buy a car</td>
</tr>
<tr>
<td>Furnishing and durable household equipment</td>
<td>Electrical appliance, home insurance, home remodel, home furnishing, interior decoration, interior design</td>
</tr>
<tr>
<td>Recreational goods and vehicles</td>
<td>Online movie, to buy a movie, watch online movie, video games</td>
</tr>
<tr>
<td>Other durable goods</td>
<td>Telecommunications, router wifi, mobile phone, electronic book, novel</td>
</tr>
</tbody>
</table>
3. The data: Google Trends

- Data available since January 2004 [not seasonally adjusted → TRAMO-SEATS]

- Distinguish durable/ non durable/ services
 - “Aggregation”: (i) Principal Components Analysis (literature); (ii) **NA weights**

![Graph showing private consumption q-q growth rates and Google: durables levels]
3. The data: Uncertainty

- **Economic Policy Uncertainty Index (EPU)** (Baker, Bloom, Davis, 2016): it measures the frequency of news related to economic policy uncertainty in two of the most popular Spanish newspapers.

- **European Commission Business and Consumer Surveys**: “unemployment expectations for the next 12 months”, indicator computed as

 \[
 \sqrt{\text{Frac}_t^+ + \text{Frac}_t^- - (\text{Frac}_t^+ - \text{Frac}_t^-)^2}
 \]

 where \(\text{Frac}^+/^- \) is the weighted fraction of consumers in the cross section with increase/decrease responses at time \(t \).

- **Indicators of disagreement about consumption and inflation forecasts**, calculated using the information provided by the FUNCAS panel of forecasters. At each point in time, this measure is computed as the standard deviation of such cross-section of forecasters

 \[
 \frac{1}{n} \sum_{i=1}^{n} (\hat{c}_i - \hat{c}_A)^2
 \]
3. The data

- **Preliminary exploration: regressions of \(\Delta \log C \) on determinants and indicators**
 - Indicators by blocks add value

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.000 ***</td>
<td>0.017 **</td>
<td>0.174</td>
<td>0.077</td>
<td>0.000 ***</td>
<td>0.086 *</td>
<td>0.001 ***</td>
</tr>
<tr>
<td>Interest rate: Euribor 3-months</td>
<td>0.066 *</td>
<td>0.065 *</td>
<td>0.558</td>
<td>0.301</td>
<td>0.862</td>
<td>0.882</td>
<td>0.903</td>
</tr>
<tr>
<td>Households’ disposable income</td>
<td>0.023 **</td>
<td>0.239</td>
<td>0.842</td>
<td>0.226</td>
<td>0.438</td>
<td>0.609</td>
<td>0.270</td>
</tr>
<tr>
<td>Lagged Household Consumption</td>
<td>0.001 ***</td>
<td>0.531</td>
<td>0.899</td>
<td>0.095 *</td>
<td>0.295</td>
<td></td>
<td>0.006 ***</td>
</tr>
</tbody>
</table>

Short-term Indicators:

- “Hard”: Social Security Registrations
- “Hard”: Retail Trade Index
- “Hard”: Services Activity Index
- “Soft”: PMI-Services
- “Soft”: Consumers’ Confidence Index
- Credit cards: amounts (real)
- Credit cards: number of transactions

\[
\Delta \log(C_t) = \alpha_1 + \alpha_2 \Delta \log(C_{t-1}) + \alpha_3 X_t + \epsilon_t
\]
3. The data

- Preliminary exploration: regressions of $\Delta \log C$ on determinants and indicators

- Indicators by blocks add value

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.000 ***</td>
<td>0.041 **</td>
<td>0.290</td>
<td>0.006 ***</td>
<td>0.235</td>
</tr>
<tr>
<td>Interest rate: Euribor 3-months</td>
<td>0.430</td>
<td>0.065 *</td>
<td>0.144</td>
<td>0.839</td>
<td>0.834</td>
</tr>
<tr>
<td>Households’ disposable income</td>
<td>0.298</td>
<td>0.984</td>
<td>0.977</td>
<td>0.977</td>
<td>0.690</td>
</tr>
<tr>
<td>Lagged Household Consumption</td>
<td>0.088 *</td>
<td>0.006 ***</td>
<td>0.000 ***</td>
<td>0.000 ***</td>
<td>0.036 **</td>
</tr>
</tbody>
</table>

Short-term Indicators:

- “Hard”: Social Security Registrations
- “Hard”: Retail Trade Index
- “Hard”: Services Activity Index
- “Soft”: PMI-Services
- “Soft”: Consumers’ Confidence Index
- Credit cards: amounts (real) 0.001 ***
- Credit cards: number of transactions 0.067 *
- Uncertainty: Unemployment 0.196
- Uncertainty: disagreement on consumption 0.229
- Uncertainty: disagreement about inflation 0.044 **
- Uncertainty: Stock market volatility 0.616
- Uncertainty: Economic Policy Uncertainty 0.052 * 0.032 **
- Google Trends: Total Consumption Index 0.005 ***
- Google Trends: Durable Goods 0.003 ***
- Google Trends: Non-durable Goods 0.577
- Google Trends: Services 0.834
3. The data

- Preliminary exploration: regressions of $\Delta \log C$ on determinants and indicators
 - But compete when used jointly

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.000 ***</td>
<td>0.041 **</td>
<td>0.290</td>
<td>0.006 ***</td>
<td>0.235</td>
<td>0.587</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>Interest rate: Euribor 3-months</td>
<td>0.430</td>
<td>0.065 *</td>
<td>0.144</td>
<td>0.839</td>
<td>0.834</td>
<td>0.887</td>
<td>0.369</td>
</tr>
<tr>
<td>Households’ disposable income</td>
<td>0.298</td>
<td>0.984</td>
<td>0.977</td>
<td>0.977</td>
<td>0.690</td>
<td>0.483</td>
<td>0.859</td>
</tr>
<tr>
<td>Lagged Household Consumption</td>
<td>0.088 *</td>
<td>0.006 ***</td>
<td>0.000 ***</td>
<td>0.000 ***</td>
<td>0.036 **</td>
<td>0.715</td>
<td>0.952</td>
</tr>
</tbody>
</table>

Short-term Indicators:

- "Hard": Social Security Registrations
- "Hard": Retail Trade Index
- "Hard": Services Activity Index
- "Soft": PMI-Services
- "Soft": Consumers’ Confidence Index
- Credit cards’ amounts (real)
- Credit cards: number of transactions
- Uncertainty: Unemployment
- Uncertainty: disagreement on consumption
- Uncertainty: disagreement about inflation
- Uncertainty: Stock market volatility
- Uncertainty: Economic Policy Uncertainty
- Google Trends: Total Consumption Index
- Google Trends: Durable Goods
- Google Trends: Non-durable Goods
- Google Trends: Services

<table>
<thead>
<tr>
<th></th>
<th>[8]</th>
<th>[9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Hard" Social Security Registrations</td>
<td>0.046 *</td>
<td></td>
</tr>
<tr>
<td>"Hard": Retail Trade Index</td>
<td></td>
<td>0.496</td>
</tr>
<tr>
<td>"Hard": Services Activity Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Soft": PMI-Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Soft": Consumers’ Confidence Index</td>
<td>0.009 **</td>
<td>0.089 **</td>
</tr>
<tr>
<td>Credit cards’ amounts (real)</td>
<td></td>
<td>0.830</td>
</tr>
<tr>
<td>Credit cards: number of transactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty: Unemployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty: disagreement on consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty: disagreement about inflation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty: Stock market volatility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty: Economic Policy Uncertainty</td>
<td></td>
<td>0.977</td>
</tr>
<tr>
<td>Google Trends: Total Consumption Index</td>
<td></td>
<td>0.001 ***</td>
</tr>
<tr>
<td>Google Trends: Durable Goods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Trends: Non-durable Goods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Trends: Services</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Literature review
3. The data
4. Modeling approach
5. The empirical exercise
6. Selection of results and conclusions
4. Modelling approach

- Different sampling frequency: monthly (indicators), quarterly (consumption)

- Publication delays cause missing values for some of the variables at the end of the sample ("ragged-end" problem)
4. Modelling approach

- Mixed-frequencies models, in the vein of Harvey and Chun (2000)
 - Multivariate setup: Unobserved Components Model
 - Flexibility: aggregation and modelling using the State Space representation
 - Models in levels: no need to worry about ex ante stationarity or cointegration
 - Seemingly Unrelated Structural Time Series Models (SUTSE)
 - Different sampling intervals: cumulator variable
 - Optimal interpolation using the Kalman Filter and the Smoothing Algorithm
 - Robust estimation
 - Use of last estimation as initial condition up to the moment when there is no estimation improvement
 - Estimate using random points around the solution to ensure that we end up in the same solution
4. Modelling approach

The basic model is of the Unobserved Component Model class known as the Basic Structural Model (Harvey 1989), that decomposes a set of time series in unobserved though meaningful components from an economic point of view (mainly trend, seasonal and irregular). The model is multivariate, and may be written as

\[x_t = \Phi x_{t-1} + E w_t \]

\[
\begin{bmatrix}
 z_t \\
 u_t
\end{bmatrix} = T_t + e_t.
\]

State-Space representation

Trend: SRW
(no seasonal)

where

\[w_t \sim N(0, \Sigma_{w_t}), \quad \epsilon_t \sim N(0, \Sigma_{\epsilon}), \]

\[v_t \sim N(0, \Sigma_{v_t}). \]

Aggregation

Cumulator variable

\[C_t = \begin{cases}
0, & t = \text{every January (monthly data)/ first quarter (quarterly data)} \\
1, & \text{otherwise.}
\end{cases} \]

Thus, the model turns out to be:

\[
\begin{bmatrix}
 z_t \\
 x_t
\end{bmatrix} = \begin{bmatrix}
 C_t \otimes I & H \Phi \\
 0 & \Phi
\end{bmatrix} \begin{bmatrix}
 z_{t-1} \\
 x_{t-1}
\end{bmatrix} + \begin{bmatrix}
 1 & H \\
 0 & E
\end{bmatrix} \begin{bmatrix}
 \epsilon_t \\
 w_t
\end{bmatrix}
\]

\[
\begin{bmatrix}
 z_t \\
 u_t
\end{bmatrix} = \begin{bmatrix}
 I & 0 \\
 0 & H^u
\end{bmatrix} \begin{bmatrix}
 z_t \\
 x_t
\end{bmatrix} + \begin{bmatrix}
 0 \\
 I
\end{bmatrix} v_t.
\]

Z_t : quarterly private consumption

u_t : set of monthly indicators
Outline

1. Motivation
2. Literature review
3. The data
4. Modeling approach
5. The empirical exercise
6. Selection of results and conclusions
5. The empirical exercise

- Real-time database
 - Different forecast origins (information sets) within each quarter: m1, m2, m3
- Sample: 1995Q1-2016Q4 [2004-2016 - limitation due to “Google Trends”]
- Out-of-sample evaluation over 2008Q1-2016Q4 [35 obs. per forecast origin]
 - Quantitative: RMSEs
 - Quantitative: Diebold-Mariano
 - Qualitative: sign anticipation
 - Qualitative: turning point detection
4. Empirical exercise: real-time database

<table>
<thead>
<tr>
<th>Information Available at Nowcasting Time: m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous quarter</td>
</tr>
<tr>
<td>1st month</td>
</tr>
<tr>
<td>Private consumption (QNA)</td>
</tr>
<tr>
<td>Social security registrations</td>
</tr>
<tr>
<td>Retail trade index</td>
</tr>
<tr>
<td>Services activity index</td>
</tr>
<tr>
<td>PMI. Services</td>
</tr>
<tr>
<td>Consumers confidence index</td>
</tr>
<tr>
<td>Credit cards</td>
</tr>
<tr>
<td>Disagreement about private consumption</td>
</tr>
<tr>
<td>Disagreement about inflation</td>
</tr>
<tr>
<td>Uncertainty on unemployment expect.</td>
</tr>
<tr>
<td>Economic policy uncertainty index (EPU)</td>
</tr>
<tr>
<td>Stock market volatility</td>
</tr>
<tr>
<td>Google Trends indicators</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Available at Nowcasting Time: m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous quarter</td>
</tr>
<tr>
<td>1st month</td>
</tr>
<tr>
<td>Private consumption (QNA)</td>
</tr>
<tr>
<td>Social security registrations</td>
</tr>
<tr>
<td>Retail trade index</td>
</tr>
<tr>
<td>Services activity index</td>
</tr>
<tr>
<td>PMI. Services</td>
</tr>
<tr>
<td>Consumers confidence index</td>
</tr>
<tr>
<td>Credit cards</td>
</tr>
<tr>
<td>Disagreement about private consumption</td>
</tr>
<tr>
<td>Disagreement about inflation</td>
</tr>
<tr>
<td>Uncertainty on unemployment expect.</td>
</tr>
<tr>
<td>Economic policy uncertainty index (EPU)</td>
</tr>
<tr>
<td>Stock market volatility</td>
</tr>
<tr>
<td>Google Trends indicators</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Available at Nowcasting Time: m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous quarter</td>
</tr>
<tr>
<td>1st month</td>
</tr>
<tr>
<td>Private consumption (QNA)</td>
</tr>
<tr>
<td>Social security registrations</td>
</tr>
<tr>
<td>Retail trade index</td>
</tr>
<tr>
<td>Services activity index</td>
</tr>
<tr>
<td>PMI. Services</td>
</tr>
<tr>
<td>Consumers confidence index</td>
</tr>
<tr>
<td>Credit cards</td>
</tr>
<tr>
<td>Disagreement about private consumption</td>
</tr>
<tr>
<td>Disagreement about inflation</td>
</tr>
<tr>
<td>Uncertainty on unemployment expect.</td>
</tr>
<tr>
<td>Economic policy uncertainty index (EPU)</td>
</tr>
<tr>
<td>Stock market volatility</td>
</tr>
<tr>
<td>Google Trends indicators</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Literature review
3. The data
4. Modeling approach
5. The empirical exercise
6. Selection of results and conclusions
6. Selection of results and conclusions

- In terms of **quantitative measures** of forecast accuracy... traditional “hard” indicators tend to dominate the race...

![Relative RMSE of all vs. “Hard”: Nowcast](image1)

![Relative RMSE: “Hard” vs. Q-RW: different forecast horizons](image2)
6. Selection of results and conclusions

- … but somewhat less so in the expansion period…

![Graph showing RMSE of GOOGLE vs. “Hard”: Nowcast: crisis / expansion](image)

![Change of “Hard”: relative RMSE crisis/expansion](image)
6. Selection of results and conclusions

- … and “nesting” models helps

Relative RMSE
Models with “Hard+other” vs. “only Hard”

Forecast origin: 1 2 3

• Soft
• Google
• Credit cards
• Random walk
• Uncertainty
6. Selection of results and conclusions

- In terms of **qualitative measures** of forecast accuracy… “soft” (and Google)
6. Selection of results and conclusions

- **Summing up:**

 - Quantitative (Hard) indicators tend to dominate

 - But: other sources add value, when combined...

 - ... and when looking at qualitative measures of forecast accuracy

 - Also (not shown), Google sources show potential to perform “event studies”

 - “New” indicators (Google, credit cards) may also be useful if more data frequencies are used (i.e. weekly data)
THANKS FOR YOUR ATTENTION
2. Literature review

- Some exceptions: papers in which GDP is modelled together with its demand and/or supply components

 - For example, Burriel and García-Belmonte (2013) for the euro area or Arencibia, Gómez-Loscos, de Luis and Pérez-Quirós (2017) for the case of Spain

 - The latter paper includes a block for QNA private consumption in which a number of hard/soft traditional indicators and credit cards’ transactions are included
2. Literature review

More recently, the literature has started to explore “new” sources

✓ GOOGLE SEARCHES

Camacho and Pacce (2016): application to tourism – including these indicators improves forecasting performance over models in which they are omitted

Artola, Pinto and de Pedraza-García (2015): application to tourism / useful

Bortoli and Combes (2015): general economic activity / limited usefulness

Vosen and Schmidt (2011, 2012): private consumption/ useful compared to soft

✓ ATM/Point Of Sale DATA

✓ UNCERTAINTY MEASURES
2. Literature review

- More recently, the literature has started to explore “new” sources

 ✓ GOOGLE SEARCHES

 ✓ ATM/Point Of Sale DATA

 Duarte, Rodrigues and Rua (2016): private consumption
 Galbraith and Tkaz (2007): economic activity, consumption (non-durable)
 Gill, Perera and Sunner (2012): private spending

 ✓ UNCERTAINTY MEASURES
2. Literature review

- More recently, the literature has started to explore “new” sources

 - GOOGLE SEARCHES

 - ATM/Point Of Sale DATA

 - UNCERTAINTY MEASURES

 Conceptually, they should help

 Gil, Pérez, Urtasun (2017): indicators of uncertainty (in particular, “financial”) influence consumption and investment, in the case of Spain

3. The data: additional slides
7. Further work

✓ Event analysis: other uses of “Google Trends”
Event studies: some illustrations

- Forecasters (and policy-makers) are occasionally confronted with unusual events (policy measures) that have the potential of affecting economic activity.

- The usual monthly-based indicators are in this case of little use, as the data are available only with a substantial lag.

- To assess the impact of these events on the economy, forecasters need to monitor indicators that are released on a timely basis: new high-frequency data (daily) sources that could provide accurate and timely information.

- Here we show that weekly google search data can be used to analyze the impact on consumer expenditure of different events (terrorist attacks, bankruptcies, political speeches etc.).

- We expect that the adjustment in the consumption of durables may be sharper after a VAT rate increase (2012).
Event studies: some illustrations

- Before the increase in VAT rates there was an increase in the consumption of durable goods (rational response to the expected increase in prices).
- This effect was transitory and was followed by a decline in consumption.
- In the case of the retail trade index you could see these effects with a lag of two months.
Event studies: some illustrations

- Although in this paper we are considering mainly monthly data, higher frequency data have also valuable information that can be used in the assessment of the response of consumption to a shock.